Deprecated: Redux::setHelpTab is deprecated since version Redux 4.3! Use Redux::set_help_tab( $opt_name, $tab ) instead. in /home/maykdev/public_html/bfhu2020/wp-includes/functions.php on line 4861

Deprecated: Redux::setHelpSidebar is deprecated since version Redux 4.3! Use Redux::set_help_sidebar( $opt_name, $content ) instead. in /home/maykdev/public_html/bfhu2020/wp-includes/functions.php on line 4861
Smaller and Faster: The Terahertz Computer Chip is now Within Reach - BFHU

Smaller and Faster: The Terahertz Computer Chip is now Within Reach

Smaller and Faster: The Terahertz Computer Chip is now Within Reach
25th March 2018 BFHU Team

Notice: Trying to access array offset on value of type bool in /home/maykdev/public_html/bfhu2020/wp-content/themes/atelier/includes/plugins/aq_resizer-1x.php on line 97

Notice: Trying to access array offset on value of type bool in /home/maykdev/public_html/bfhu2020/wp-content/themes/atelier/includes/plugins/aq_resizer-1x.php on line 98

Hebrew University Researcher Shows Proof of Concept for Nanotechnology that will make Computers Run 100 Times Faster

Following three years of extensive research, Hebrew University of Jerusalem (HU) physicist Dr. Uriel Levy and his team have created technology that will enable our computers—and all optic communication devices—to run 100 times faster through terahertz microchips.

Until now, two major challenges stood in the way of creating the terahertz microchip: overheating and scalability.

However, in a paper published this week in Laser and Photonics Review, Dr. Levy, head of HU’s Nano-Opto Group and HU emeritus professor Joseph Shappir have shown proof of concept for an optic technology that integrates the speed of optic (light) communications with the reliability—and manufacturing scalability—of electronics.

Optic communications encompass all technologies that use light and transmit through fiber optic cables, such as the internet, email, text messages, phone calls, the cloud and data centers, among others. Optic communications are super-fast but in microchips they become unreliable and difficult to replicate in large quantities.

Now, by using a Metal-Oxide-Nitride-Oxide-Silicon (MONOS) structure, Levy and his team have come up with a new integrated circuit that uses flash memory technology—the kind used in flash drives and discs-on-key—in microchips. If successful, this technology will enable standard 8-16 gigahertz computers to run 100 times faster and will bring all optic devices closer to the holy grail of communications: the terahertz chip.

As Dr. Uriel Levy shared, “this discovery could help fill the ‘THz gap’ and create new and more powerful wireless devices that could transmit data at significantly higher speeds than currently possible. In the world of hi-tech advances, this is game-changing technology,”

Meir Grajower, the leading HU PhD student on the project, added, “It will now be possible to manufacture any optical device with the precision and cost-effectiveness of flash technology”.

Coming soon to a chip near you…